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Abstract-—-Many papers deal with the determination of flexural rigidities of anisotropic plates from
only one specimen subjected to one or several loading conditions. In such a problem, one of the
main questions is the best identification of the unknown parameters according to the type of
material. the shape of the specimen and the loading conditions. It seems that no general rule giving
the “best™ configuration leading to an accurate determination has been established. One of the main
reasons 1s the anisotropic nature of the tested plates. which leads the mechanical configuration to
be dependent on the material itself. This problem would be avoided by the direct measurement of
invariant parameters from which the rigidities are easily deduced. These invariant parameters reveal
the intrinsic elastic behavior of the tested plate. contrary to the rigidities usually considered which
are directional quantities.

This paper describes a procedure for the identification of invariant parameters governing the
bending of anisotropic plates. It is shown that the whole displacement field processing of the surface
strain fields obtained in two particular loading cases directly provides those parameters. A numerical
simulation shows the stability of the present method. Copyright ¢ 1996 Elsevier Science Ltd

INTRODUCTION

The determination of the whole set of rigidities of anisotropic media from only one specimen
subjected to a reduced number of testing configurations is the objective of many papers.
Different materials are tested: wood (Rouger et al., 1990), fabric (Hendriks, 1991). cor-
rugated paper (Mauvoisin et al.. 1994) and especially composite materials (for instance
Mota Soares er al., 1993 : Grédiac and Vautrin, 1993). The papers to be found present two
main types of methods based on either static or dynamic tests performed on plate specimens.

Suitable treatments of inhomogeneous strain fields provided by static tests are available
for the determination of the stiffness parameters (Rouger et al., 1990 ; Hendriks, 1991
Bezine and Shi, 1992 Grédiac and Vautrin. 1993). The whole displacement field on the
surface of the plate 1s required for such methods. On the other hand, dynamic tests are
based on the measurement of a limited number of eigenfrequencies. An objective function
expressing the difference between the measured eigenfrequencies of the specimen and the
corresponding eigenfrequencies provided by a numerical model is established. Various
methods which minimize this function with respect to the constants to be determined have
been published (Pedersen, 1989 De Wilde. 1991 : Frederiksen. 1993 ; Mota Soares et al.,
1993). It must be pointed out that the unknown constants are determined indirectly with
such dynamic methods.

The main advantage of the above approaches is 10 reduce the scatter usually induced
by the use of many coupons. Moreover. the tested specimen is often a large part of a
structure like a plate and local discrepancies of the mechanical properties are consequently
averaged out. This opens the way to a much more effective identification of properties than
is possible with the usual tests carried out on smaller coupons. For the sake of simplicity
in the experimental procedure, these parameters are often measured using bending tests.
Two theoretical difficulties appear. however. for solving this inverse problem. First, the
strain field on the surface of the tested specimen is usually heterogeneous and no exact
solutions are available to relate the unknown parameters to the measured loading. strain
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or displacements components. Hence, an efficient numerical procedure is generally required
to deduce the unknown parameters from the measurements. Second, considering het-
erogeneous strain fields allows an extra freedom for the design of the specimen shape as
well as for the location of the supports and of the loading. Such a possibility can be
applied to define experimental set-ups which provide the best possible identification of the
parameters. This challenge is, however, difficult to face because of the anisotropy of the
tested materials. For instance, a testing configuration well suited to a particular material
can become less adequate if the specimen is rotated in the testing device or if another
material with a different degree of anisotropy is tested. A solution is to define loading cases
which would allow the determination of invariant parameters from which the directional
stiffnesses or compliances are deduced (Tsai and Hahn, 1980). Such an approach partially
solves the problem of the best identification of the parameters, as the invariant parameters
are determined independently on the position of the plate in the testing device. Moreover,
these invariant parameters describe the intrinsic elastic behavior of anisotropic materials
and allow comparisons between them independently of the frame of reference.

This paper is divided into three parts. The local states of stress allowing the deter-
mination of invariant parameters are firstly presented in the case of a plane state of
stress. The loading cases leading to the corresponding average states of stress will then be
determined within the framework of the bending of plates. Results of various numerical
simulations showing the relevancy and the stability of the present approach will also be
given.

STATES OF STRESS ALLOWING THE DETERMINATION OF INVARIANT PARAMETERS

Introduction
Within the framework of plane elasticity, the strain-stress relations for an anisotropic
material is written as follows :
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The notation introduced by Tsai and Hahn (1980) can be used advantageously
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p. and p, are respectively the first-order invariants for strain and stress transformations.
They are the coordinates of the centers of the Mohr’s circles for strain and stress trans-
formations. In the same way, the second-order invariants are the radii of these circles. They
are defined as
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R = ¢+r
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If we use the combinations as defined by eqns (2) and (3), eqn (1) becomes
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The compliances are deduced from invariant parameters described for instance by Tsai and
Hahn (1980) or Verchery (1990). Such parameters reveal the effective intrinsic elastic
properties of the material to be characterized. For the sake of simplicity, using the notation
introduced by Verchery (1990):

(S, = T,+2T,+R,cosda,+4R, cos2a
Sy =T,+2T,+ R, cosda,— 4R, cos 2a,
S»= —T,+2T, — R, cosda,

(6)
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LSs6 = 2(— R, sinda, + 2R, sin 2a,)
Conversely,
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T,. T\. Ry. R, are four invariant and independent parameters. Geometric interpretation of
the above equations can be shown through two generalized Mohr’s circles with radii R,
and R, and rotations four and two times that of the coordinate axes (Tsai and Hahn, 1980;
Verchery, 1990) (see Fig. 1). The distance between the two circles is T, + 27,. The locations
of the centers are defined arbitrarily by 7, and T,+37,. @, and «, are changed into g,+ 0
and «a,+ 0 under a clockwise rotation 0 of the frame. The difference a;,— a, is therefore the
fifth and last invariant. Using these linear combinations, the strain-stress relation (5)
becomes

(D i 2T, 2R, cos2a, 2R, sin2a; \[p,
( q. !: 2{ 2R, cos2a, T,+ R,cosdq, R, sin4a, qs } (8)
v '\ 2R, sin 2a, R, sin4a, To—Rycosday/ \r, |

When a mechanical test is performed, the material is subjected to a given state of stress
defined by p,. g, r,. The corresponding state of strain is measured and three linear equations
can be written from eqn (8). In the general case, when p,. ¢, and r, are not zero, it can be
seen in eqn (8) that one cannot directly determine any set of three parameters out of the
six. However, two particular states of stress will provide directly these parameters.
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Fig. 1. Generalized Mohr's circles for compliance.

Isotropic stresses
In this case, the state of stress is such that

g, =r,=0 and p, #0 9
Equation (8) becomes
/p;:\ [ Tl )
q.]=4p,| R, cos2a, ) (10)
\r,) \ R, sin2a, |
Hence
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As a result, three of the six unknown, T, R, and g, are obtained if the material is
subjected to isotropic stresses. In this case, the Mohr’s circle of the strain and one of the
generalized Mohr's circle are homothetic (Fig. 2).

Shear stresses

On close inspection, it can be seen in eqn (8) that the three remaining parameters Ty,
R, and g, are involved only in the two last equations. Hence they cannot be directly
characterized from any particular state of stress. Notice, however, that pure shear stresses
lead to

p,=r,=0 and ¢, #0 (12)
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Fig. 2. First generalized Mohr’s circle obtained with isotropic stresses.

In this case, eqn (8) becomes

qu>: 2. T+ R, cos 4(1()) (13)
r, R, sinda,

Assuming now that the same state of stress is applied to the same plate rotated through
45 , ay increases through 45 . Let the new state of strain be defined by p;. ¢, and r;

q: ~ 2, Ty—R, FOS da, (14)
P — R, smda,

The three last unknown parameters are then deduced from egqns (13) and (14) (see Fig. 3)
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In conclusion, a state of pure shear stress applied in two frames rotated through 45 is
required to determine 7. R, and a,.
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Fig. 3. Second generalized Mohr’s circle obtained with two shear stress states.

PRACTICAL REALIZATION. INTRODUCTION OF AVERAGE STRESS AND STRAIN
COMPONENTS

Introduction

The practical realization of the two above homogeneous states of stress on the same
specimen would obviously be problematic. The idea developed here is to apply two loading
cases inducing the corresponding average states of stress. The stress field is therefore
heterogeneous and eqns (9) and (12) are not necessanly verified at any point.

Let X be the value of a quantity X obtained with average strain or stress components
on the surface of the tested specimen
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From eqns (9) and (12), one can define average isotropic stresses by

g, =7, =0 and p, #0 (17)

and average pure shear stresses by

p.=F, =0 and g¢q,#0 (18)

Assuming the material properties are homogeneous on the whole specimen, a relationship
between average strain and stress components is deduced from eqn (8)

ip.. 2T, 2R, cos 2a, 2R, sin2a, | (p,\
g. |= 2| 2R, cos2a, T,+ R,cosda, R, sinda, q, (19)
\r, \ 2R, sin 2a, R, sinda, T,— Rycosday/ \r,

Using the two particular states of stress defined by eqns (17) and (18), eqns (11) and (15)
become

-
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The main feature of this approach is the requirement of the whole displacement or strain
field on the surface of the specimen. From an experimental point of view, such a measure-
ment is performed with a suitable optical method already used for such identification
problems (Hendriks, 1991 ; Grédiac and Vautrin, 1993 ; Mauvoisin et a/., 1994). Let us now
examine the loading cases which lead to the two above particular average states of stress.

Relationship between the applied forces and the average stress components on the surface of
the tested plate

For the sake of simplicity in the experimental procedure, consider a plate simply
supported and subjected to a normal force in M, as plotted in Fig. 4. Examine the relation-
ship between the applied force and the average stress components on the surface of the
plate. Note the compliances involved here are the bending compliances & (Tsai and Hahn,
1980).
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Fig. 4. Plate with normal load.

The link between the average strain and the average stress on the surface on the plate
is firstly obtained integrating the strain-stress relation (1) on the whole surface of the plate
and dividing by this surface :

e fdY, dts d¥\ o)
& |=|dt dY d% || o (22)
\a/ \d:]k& ’zk(» d?:e/ \07/

The stress components are here the flexural stress components (Tsai and Hahn, 1980).

oM
7 =S =126 (23)
.

where M, i = 1,2,6 are the bending moment components.

The relationship between the average stress components and the applied loading is
firstly obtained with the principle of virtual work for a deformable body, which states that
the external and internal virtual works are equal for any compatible deflection field v (Dym
and Shames. 1973). In the present case, the principle of virtual work leads to the following
equation (Lekhnitskii, 1968).

1 J DY, DY, DY\ e
Z Foti(xy) = ;J (£,.6:.80)| DY, D% D¥)| e )dS (24)
- * \D¥, DI, D¥fle!

where [D*] = [d*] "' is the normalized bending stiffness matrix for uncoupled plates and F;
is the force acting at M(x, v;), i=1..4. This relationship is verified for any virtual
deflection field w from which the corresponding virtual surface strain components &,, & and
&, are deduced through the Love-Kirchhoff theory. It can be shown that the three following
quadratic independent virtual fields lead to the average surface strain components (Grédiac
and Vautrin, 1990):
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where %, f;and 3, i=1..2,j=1..3, are constant. It must be pointed out that the choice
of these constants has no importance in the present case because they induce rigid solid
virtual motions that give a zero virtual work as the plate is in equilibrium. Equation (24)
written with the three above virtual fields leads to

[ifﬁﬂmJJ
fer 3 fdf dY, df .
( : ) = Sh:( *dt d% ’:ZIF,WZ(.\‘,».}',) (26)
Ve ! d¥,  d%  df, !
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The relationship between the forces and the surface average stress is then deduced
from eqns (22) and (26):
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The plate is in equilibrium, then forces F,, i = | .. 3, are given as a function of the applied
force F, and the coordinates of points M, i=1..4:

—~F,
F= **\_‘* (Xs +Kv3)
X

—F 28
F.= "'1_ ! s+ Ki3) @8)

N

F. = KF,
with

=N Va+ X TNy
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The surface average stress components are then expressed as a function of the applied force
Fy

o 3F. /K'\‘,‘»(-\'_%_-\'1)+»\'4(-\'4_-\'1)\‘

oy | = = K0 —ra) v =) (30)
— Sh- .
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Forming the combinations p,. ¢, and r, defined in eqn (3)
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Parameters C; only depend on the location of the supports and of the applied loading.
Substituting eqn (31) into eqns (17) and (18) leads to the relations that must verify the
coordinates of points M,, i = 1 ..4, to obtain the two particular average states of stress
giving directly the invariant parameters.

Particular configurations leading to the invariant parameters in bending
The average isotropic surface stresses defined in eqn (17) are obtained if parameters
C.i=1..3, verify

C,#0. C-=0, C;=0 (33)

Introducing the coordinates of points M,. i = 1 .. 4, eqn (33) becomes

XXy —=x )+ (s = 1) ]+ —x) e —2) #0
Klxa(xs—x)) =1 (s — 1))+ —x ) = vy —12) =0 (34)
Kx;vi4+x304 =0

In the same way, the average shear stress state is obtained if parameters C,, i = 1 .. 3, verify
C, =0, C.#0, C;=0 (35)
Iniroducing the co-ordinates of points M. i = 1.. 4, eqn (35) becomes
CK[x (0 =X ) + 10—y ]+ X (s — 3+ 3, (s —y2) =0

SRS = x) = 0 =y s (v —x) = v (e —y2) # 0 (36)
1§ K.\'g.\'} +.\'4_V4 =0

These two sets of three equations, linking the six coordinates, characterize the two types of
mechanical configurations from which the invariant parameters are determined using the
procedure defined in the above sections. Only a particular case can however be reasonably
studied in more detail. Assume, for instance, that the support M, is located on the y-axis,
i.e. x; = 0. Equation (34) reduced to

{y}yz = — XXy, (37)

Ya =

and eqn (36) to
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Two examples of such loading cases are plotted in Figs 5 and 6. Note that the anticlastic
bending (Lekhnitskii, 1968) is a particular case of eqn (38) in which y, = —y, = —x, = xy.

In conclusion, it has been shown that two basic mechanical configurations allow the
direct determination of the unknown invariant parameters. This approach will now be
tested using numerical simulations.

NUMERICAL SIMULATIONS

The aim of this section is to validate the present identification procedure and to
examine the sensitivity of the identified parameters on errors in the displacement field.
Notice the above procedure is valid for thin plates of any shape. However the shape of the
tested specimen is here a square for the sake of simplicity in the numerical simulations. The
plate is made of unidirectional graphite/epoxy. which compliances are given in Table 1.

Table 1. Normalized bending compliances used for the simulations

dar, dt dt di dt %,
TPa TPa ' TPa ' TPa ' TPa ' TPa

7.25 11111 —2.17 140.85 0 0
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Fig. 8. Loading case 2 simulated with the finite element method.

The dimensions are 200 x 200 x | mm®. The two loading cases shown in Figs 7 and 8 are
simulated using a finite element model. The magnitude of the force is 100 N. The location
of the supports is respectively :

loading case 1: M, (100.0)M,(0,100)M (0, — S0)M ,(50.0)
loading case 2: M, (100.0)M,(0,100)M (0, — 50) M ,(— 50,0)

The plate specimen is meshed with 60 x 60 or 62 x 62 rectangular elements according
to the location of the plate on the supports such that the loading points and the supports
match some nodes of the mesh. Each element is then divided in triangular elements based
on Love-Kirchhoff plate theory (Clough and Tocher, 1965 Zienkiewicz, 1989b). Each
node has therefore three degrees of freedom : the deflection w and the two slopes 6, and 6,.

In the first loading case defined in Fig. 7, the .x-1 basis matches the orthotropy basis.
In the second loading case defined in Fig. 8, the x-) basis matches the orthotropy basis for
the first simulation. [t is then rotated through 45 deg for the second simulation.

Parameters C,, i = 1 .. .3, are firstly computed for the two loading cases using eqn (32)
(Table 2). The three linear average stress combinations p,_, g, and r, are then deduced using

Table 2. Parameters (, for the two loading cases

C, <, s
m m* m
loading case 1 —3x10 0 0
loading case 2 0 15%10 ° 0
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Table 3. Average stress combinations for the two loading cases

P, 4, r,

MPa MPa MPa
loading case | —18.75 0 0
loading case 2 0 56.25 0

Table 4. Average strain combinations for the two loading cases. The ortho-
tropy basis matches the (x, y) basis (n.s. = not significant, i.e. the mag-
nitude of the strain component is less than 1 x 10 %)

P 4. r.

10-° 10 ° 10 °
loading case 1 - 1069 974 n.s.
loading case 2 —2921] 3451 n.s.
loading case 2. plate rotated I.s. ns. —3990
through 45

eqn (31) (Table 3). It must be emphasized that these quantities only depend on the location
of points M, they are not influenced by the material. The three linear strain combinations
D.. . and r, are computed from the surface displacement field which is directly related to
the two rotation fields 6, and 8, according to the Love-Kirchhoff theory. Hence, the element
used for computing these integrals is a simple bilinear displacement rectangular element
with four nodes and two degrees of freedom by node: 6, and 6, (Zienkiewicz, 1989a). The
mesh is the same as that used for the finite element computations. The results are given in
Table 4.

It 1s also necessary to estimate the effect of measurement errors on the parameters.
Hence the rotations 6, and 6, provided by the finite element model at each node of the
mesh are modified as follows

fl.=6,(1+d), i=xy 39)

where d 15 a random number of magnitude 4.

The parameters are computed applying the present procedure. The results are listed in
Table 5. Four sets of simulations are performed : é = 0. 1%, 5% and 10%. As may be seen,
five out of the six parameters are identified very precisely in the case é = 0. Only R, presents
a difference of 6.2%. This is probably due to the small influence of this parameter on the
global response of the plate when it is bent. It appears then that the sensitivity is different
from one parameter to another when the magnitude of the random errors increases. Apart
from R, already discussed, the whole set of parameters is determined with an error less

Table 5. Actual and identified parameters

T, T, Ry R, a, a,

TPa ' TPa ! TPa ! TPa ! deg deg
actual 32.94 14.25 2.26 12.98 45.00 90.00
identitied. 4 = 0% 33.07 14.25 2.40 12.98 45.00 90.00
error 0.4% 0% 2% 0% 0% 0%
identified. 4 = 1% 33.17 14.34 2.45 13.02 45.01 89.97
error 0.7% 0.6% 8.4%, 0.3% 0.02% —0.03%
identified. 4 = 5% 3338 14.69 2.65 1318 45.02 89.86
error 1.9% 3.1% 17.26% 1.54% 0.04% —0.16%
identified. 4 = 10% 34.09 15.13 291 13.38 45.04 89.71

error 3.49% 6.18% 28.76% 3.08% 0.08% —0.3%




3982 M. Grédiac

than 6.18% when 4 = 10%. As a result, the method appears to be only slightly dependent
on experimental errors.

CONCLUSION

A strategy for the direct determination of invariant parameters governing the bending
of anisotropic plates has been developed and simulated using a finite element model. The
main advantage of the present approach is to provide invariant parameters that describe
the intrinsic nature of the mechanical behavior of the tested plate, even if it is anisotropic.
From a partical point of view, it has been shown that two fundamental types of testing
configurations carried out on the same specimen emphazise the contribution of those
invariant parameters. The present method also provides the parameters directly. This
feature avoids iterative calculations with initial guesses usually proposed in mixed
numerical/experimental methods available in the literature. '

This paper has included only numerically simulated experiments and is purely theor-
etical. The practical application requires the experimental measurement of the whole strain
field on the surface of the plate specimen. Such measurements can be performed with optical
methods like moiré already used in similar applications. It is worth pointing out the accuracy
of the identified parameters from numerical tests and the low dependence on simulated
experimental errors. This due to the fact that average strain components are considered.
This last property shows that the present approach can reasonably be implemented in
practice.
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